首页> 外文OA文献 >The development of upper bound and associated finite element techniques for the plastic shakedown of thermally loaded structures.
【2h】

The development of upper bound and associated finite element techniques for the plastic shakedown of thermally loaded structures.

机译:上限和相关的有限元技术的发展,用于热负荷结构的塑性减振。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis is concerned with the behaviour of structures subjected to cyclic or repeated thermal loading in the presence of steady mechanical loads. The present work consists of four main parts; in the first part, the thermal loading problems and the possible solution methods are discussed. The development of shakedown theory and its applications are reviewed with particular attention on the case of thermal actions. By utilising the upper bound shakedown theorem and assuming a broader range of shakedown conditions, a new extended upper bound technique for estimating the extent of plastic shakedown (reversed plasticity) region is developed. The occurrence of the structural and material shakedown and a related structural theory which indicates whether a reversed plasticity region exists, are discussed. In the second part, the influence of cyclic hardening and temperature dependents of material properties on the modes of behaviour of two representative kinematically determinate structures; namely a parallel two-bar assembly and a Bree plate are investigated by means of an empirical cyclic hardening material model and the theory, developed in the first part. Comparing the available experimental data on a two-bar structure with the predictions of perfect plasticity, complete cyclic and cyclic hardening models it is argued that the use of perfect plasticity model may not -always guarantee the safe performance above the shakedown limits. In this region the use of complete cyclic hardening model gives conservative boundary whereas the cyclic hardening model gives the most appropriate boundary. The analytical solutions for the Bree plate with temperature independent material properties show that the boundary between the reversed plasticity and ratchetting is insensitive to the hardening assumption. The influence of the transient thermal loading and the effects of multi-axial state of stress on the Bree solution are also studied. The applications of the upper bound technique to the problems involving transverse and in plane loading in plates are presented and the importance of the shear stresses in this type of loading conditions are emphasized. In the third part, a finite element technique for the computing of shakedown limits and estimation of the corresponding mechanisms of deformation for kinematically highly indeterminate structures is developed. Presenting the main features of the technique which is based upon the upper bound shakedown theorem and linear programming, a number of solutions are given to specific problems to illustrate the types of problems which may be solved by the technique. Some recently reported experimental data on a tube under axisymmetrical loading is compared with the present analytical predictions. Finally, the conclusions and the proposals for future work are presented in the fourth part.
机译:本文涉及在稳定机械载荷作用下承受循环或反复热载荷的结构的行为。目前的工作包括四个主要部分。在第一部分中,讨论了热负荷问题和可能的解决方法。综述了摇动理论的发展及其应用,并特别关注了热作用的情况。通过利用上限摇动定理并假设更广泛的摇动条件,开发了一种新的扩展上限技术,用于估计塑性摇动(反向可塑性)区域的范围。讨论了结构和材料振动的发生以及表明是否存在反向塑性区域的相关结构理论。在第二部分中,循环硬化和材料特性的温度依赖性对两个代表性的运动确定结构的行为模式的影响。借助经验性的循环硬化材料模型和在第一部分中开发的理论,研究了平行的双杆组件和Bree板。将两杆结构的可用实验数据与完美可塑性,完整的循环和循环硬化模型的预测值进行比较,认为使用完美可塑性模型可能无法始终保证击落极限以上的安全性能。在该区域中,使用完整的循环硬化模型可以得出保守的边界,而循环硬化模型可以得出最合适的边界。具有与温度无关的材料特性的Bree板的解析解决方案表明,可逆塑性与棘轮塑性之间的边界对硬化假设不敏感。还研究了瞬态热负荷的影响以及应力的多轴状态对Bree溶液的影响。介绍了上限技术在涉及板的横向和平面载荷问题上的应用,并强调了在这种载荷条件下切应力的重要性。在第三部分中,开发了一种用于运动学高度不确定的结构的有限元技术,用于计算击落极限和估计相应的变形机制。介绍了基于上限摇动定理和线性规划的该技术的主要特征,针对特定问题提供了多种解决方案,以说明该技术可以解决的问题类型。将一些最近报告的轴对称载荷下的管上实验数据与当前的分析预测进行了比较。最后,第四部分介绍了结论和对未来工作的建议。

著录项

  • 作者

    Karadeniz, S.;

  • 作者单位
  • 年度 1983
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号